# Redundancy Detection in ESL Writings

Huichao Xue and Rebecca Hwa
Department of Computer Science
University of Pittsburgh

#### Redundancies in ESL essays

Vigorous writing is concise... This requires ... that he make every word tell.

—Elementary Principles of Composition, *The Elements of Style (Strunk, 1918)* 

- Writing concisely is challenging
  - Especially for Non-native speakers
- Redundancy extra words/phrases:
  - Do not add to the meaning
  - Make the sentence more awkward to read

This study asks the question of whether ...

- Redundancies are prevalent
  - In NUCLE (Dahlmeier and Ng, 2011), 13.71% of the marked problems are redundancy (2<sup>nd</sup> most frequent)

#### Examples of Redundancies in NUCLE

- There should be a careful consideration about what are the things that governments should pay for.
- The sodium-cooled technique was started to use since the year 1951.
- Non-renewable energy sources such as fossil fuels will soon be depleted within decades.
- Nowadays, as the population of the world is increasing rapidly, humans are facing severe food crisis.

## Goal: Automatically detect redundancy

Previous work did not directly address redundancy

| Related work (XX)                                                                                                               | XX but not redundant                         | Redundant but not XX                                  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|
| Grammar Error Correction<br>(Leacock et al. 2010)                                                                               | He like likes dogs.                          | illustrate the methodological challenge               |
| Sentence compression – keep<br>words that are specific to the<br>sentence (Jing 2000; McDonald 2006;<br>Clarke and Lapata 2007) | Kurtz completed in high platform diving.     | These findings are often unpredictable and uncertain. |
| Sentence simplification (Coster and Kauchak, 2011)                                                                              | positive critical reception  -> good reviews | not only just                                         |

 To remove redundancy, we need an automatic measure for redundant phrases

#### Contributions

- We conducted the first study on automatic redundancy detection
- We propose a measure of redundancy
  - A probability value
  - The calculation boils down to looking at the input sentence's alignment with its translation
    - If one word is aligned to nothing → redundant
    - If two words are aligned to the same word → redundant
    - If deleting one word/phrase hurts fluency → non-redundant
- The proposed measure out-performs several baselines by a large margin

#### Redundancy – words that do not tell

- We consider a word/phrase redundant if ...
  - Deleting it results in a fluent English sentence that conveys the same meaning as before
- Our definition suggests two factors for redundancy:



### Approximating Meaning with Translation

- Sentence's meaning can be represented by its translation in another language. (Hermet et al. 2009, Madnani et al. 2012)
- A word's alignment suggests how much meaning it conveys



### Modeling Redundancy with Translation

A phrase  $e_s \dots e_t$  in e is deemed redundant if we translate sentence e into foreign language f and then back into English, we are likely to obtain the rest of the sentence  $e^{s,t}$ 

$$R(s,t;e) = \log \sum_{F=f} \left( \Pr(f|e) \Pr(e_{-}^{s,t}|f) \right)$$

$$\approx \log \left( \Pr(f^{*}|e) \Pr(e_{-}^{s,t}|f^{*}) \right)$$

$$= \log \Pr(f^{*}|e) + \log \Pr(e_{-}^{s,t}|f^{*})$$

$$= \log \Pr(f^{*}|e) + \log \Pr(e_{-}^{s,t}|f^{*})$$
We want to calculate this number

- We consider the one best translation  $f^*$  of e
- E.g. *e* = "I really like it", *f*\* = "我真的喜欢它"

  \*\*R(really) = log Pr("I like it" | "我真的喜欢它") + C(*e*)

#### We don't directly query SMT systems for

$$\Pr(e_-^{s,t}|f^*)$$

- It is expensive: for every sub-phrase, we need one translation query
  - Consider enumerating all sub-phrases in a 20-word English sentence



- It is inconvenient: many translation systems do not have APIs for it
- We propose an approximation
  - Less expensive: 1 translation query per sentence
  - Convenient: uses normal MT system output, translation and alignment

## Approximating $Pr(e_{-}^{s,t}|f^*)$

- SMT systems roughly compute it in two steps
  - 1. Align the two sentences
  - 2. Calculate the probability given the alignment
- Our approximations
  - 1. We reuse the alignments between e and  $f^{st}$



### Approximating $Pr(e_{-}^{s,t}|f^*)$

- SMT systems roughly compute it in two steps
  - 1. Align the two sentences
  - 2. Calculate the probability given the alignment
- Our approximations
  - 1. We reuse the alignments between e and  $f^st$
  - 2. IBM model 1 (Brown et al, 1993)— each word contributes to its aligned slot
    - Deleting a word risks losing the its aligned word



### Proposed Redundancy Measure

$$R(s,t;e) \approx \boxed{ \begin{aligned} & \text{Fluency w/o} \\ & e_{s} \dots e_{t} \\ & \text{LM}(e^{s,t}) \\ & + \sum_{s \leq j \leq t} A(j) \log \Pr(e_{j}) \\ & + C(e) \end{aligned}}$$

- LM( $e_{-}^{s,t}$ ): log likelihood of sentence without  $e_{s}...e_{t}$ 
  - A phrase is redundant, if deleting it does not hurt fluency
- Meaning Redundancy
  - -A(j): number of words aligned with  $e_i$



- $Pr(e_i)$ : unigram probability of  $e_i$ 
  - Rare words are often less redundant

#### **Experimental Setup**

- Evaluation Data: NUCLE (Dahlmeier and Ng, 2011)
  - Redundancies are explicitly marked
  - Evaluation set:
    - 527 sentences (from 200 essays)
    - Each sentence has exactly one redundant phrase
- Task:
  - Pick the most redundant phrase for a given length
    - pick one from ≈20
  - Evaluation Metric: accuracy
- Tools:
  - Fluency: trigram language model (trained on English Gigaword)
  - Google translate (French as pivot)

### Different Redundancy Measures

| Metric                 | Explanation                                                | accuracy |
|------------------------|------------------------------------------------------------|----------|
| random                 | the random baseline                                        | 4.44%    |
| R(s, t; e)             | proposed method                                            | 21.63%   |
| LM( $e^{s,t}$ )        | Fluency, by trigram language model                         | 8.06%    |
| meaning-red            | Per-word meaning redundancy                                | 8.59%    |
| sig-score              | sentence compression (Clarke et al. 2007)                  | 10.71%   |
| round-trip             | number of words disappeared after a round-trip translation | 10.69%   |
| trigram + α round-trip |                                                            | 14.80%   |
| trigram + α sig-score  |                                                            | 11.01%   |

Using translation as an approximation for sentence meaning is plausible

## Using different pivot languages for redundancy measurement



European languages generally work better.

#### Influence from meaning components

- Google translate organizes output into characters for Asian languages
  - Characters are not the minimum meaning component explain

解 释 to solve to release

 We merged characters/alignments using tokenization result for zh-CN

|               |                     | language | accuracy |  |
|---------------|---------------------|----------|----------|--|
| Getting close | De                  | 21.82%   |          |  |
|               | Zh-CN               | 17.74%   | improved |  |
|               | Zh-CN (char-merged) | 20.11%   |          |  |

## What types of redundancies do $LM(e_{-}^{s,t})$ /meaning-red capture?

- We measure recalls: percentage of redundant function/content words correctly detected
  - Function words: determiners and prepositions
  - Content words: others

| measure           | accuracy | Recall (function) | Recall (content) |
|-------------------|----------|-------------------|------------------|
| $LM(e^{s,t}_{-})$ | 8.06%    | 3.95%             | 9.73%            |
| meaning-red       | 8.59%    | 20.23%            | 3.87%            |
| R(s, t; e)        | 21.63%   | 38.16%            | 14.93%           |

- Fluency (trigram) helps detect redundant content words
- Meaning redundancy (meaning-red) helps detect redundant function words
- The accuracies of these two components add up

#### Conclusions

- We conducted the first study in redundancy detection
- We proposed to account for redundancies by comparing one sentence with its translation
  - The measure accounts for one phrase's contribution to meaning and fluency
- The proposed measure shows promise for redundancy detection
  - Outperforms other metrics by a large margin
  - Five-times more accurate than random baseline

## Thank you!

- This work is supported by U.S. National Science Foundation Grant IIS-0745914
- We thank the anonymous reviewers, Joel Tetreault, Janyce Wiebe, Wencan Luo, Fan Zhang, Lingjia Deng, Jiahe Qian, Nitin Madnani and Yafei Wei for helpful discussions